

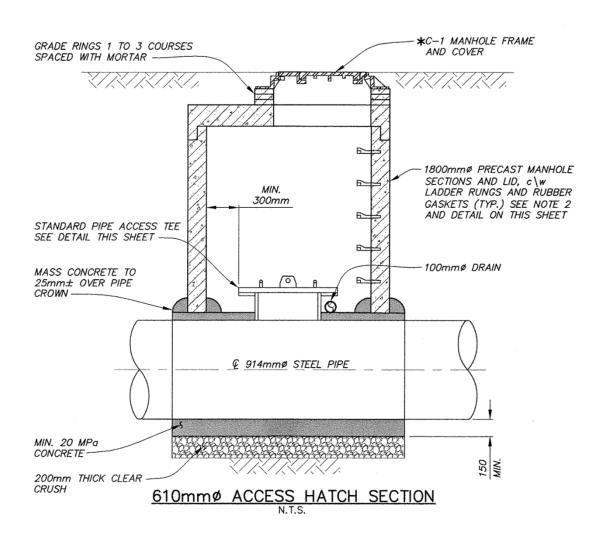
# La ventilazione naturale nelle strutture isolate nel sottosuolo

Neil McManus, CIH, ROH, CSP

NorthWest OH&S North Vancouver, BC

Programa de Pós-Graduação em Engenharia Civil

Universidade Federal Fluminense


Niteroí, RJ, Brasil

#### Strutture isolate nel sottosuolo

- Sezioni temporanemente isolate di sistemi interconnessi
- Strutture permanentemente isolate:
  - Produzione e distribuzione di acqua potabile:
    - Camere di avampozzo
    - Camere valvole
    - Camere di misura
    - Camere sistemi di clorazione
  - Pozzetti di servizio pipeline
  - Pozzetti reti di teleriscaldamento
  - Alcune camerette di comunicazione

#### Strutture isolate nel sottosuolo





# Chiusini / aperture















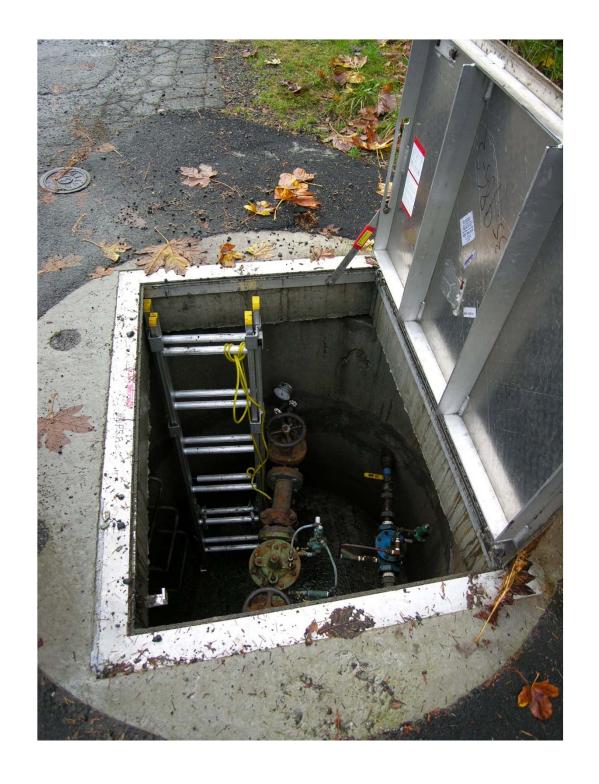




#### Aperture di accesso

- Alcune delle strutture isolate nel sottosuolo hanno aperture per l'accesso dalla superfice
- Alcune strutture dispongono di sfiati a livello o al di sopra della superfice

 Ma queste strutture hanno una ventilazione naturale?


### Questa struttura è ventilata?



In queste strutture si verifica la ventilazione indotta da forze naturali?

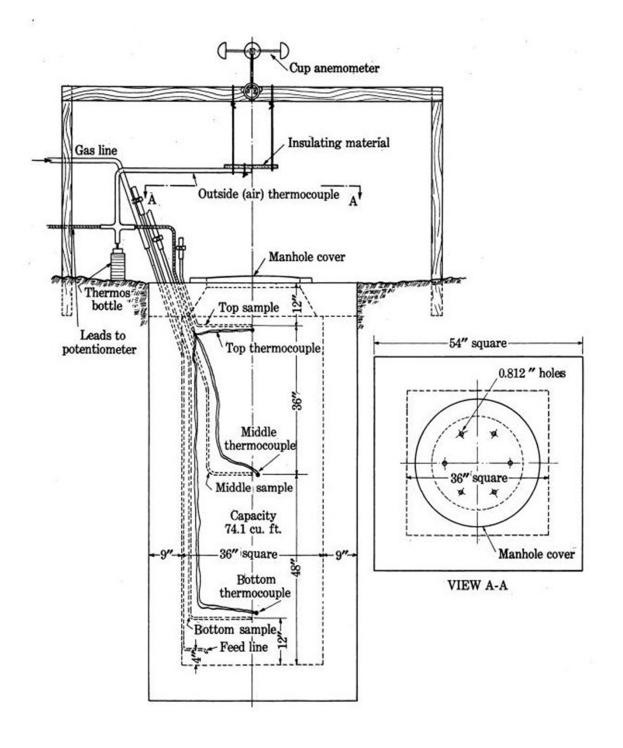


In queste strutture si verifica la ventilazione indotta da forze naturali?



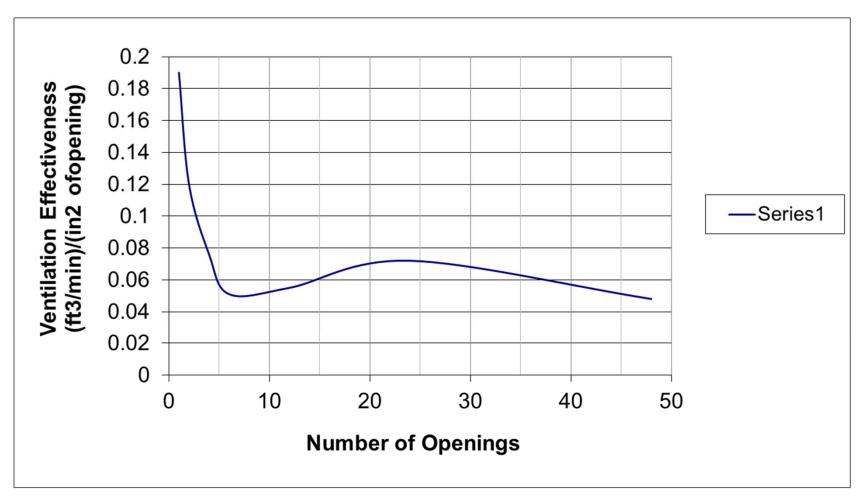
In queste strutture si verifica la ventilazione indotta da forze naturali?




#### Ufficio delle miniere - Misurazioni

- Ha effettuatostudi sulle condizioni atmosferiche nelle strutture del sottosuolo tra gli anni 1920 e 1930
- Ha collaborato con le imprese di Boston
- Misurazioni rilevate nelle camerete del sottosuolo esistenti:
  - Fuoriuscita di vapori di carburante e propagazione nel suolo adiacente
  - Origini dei gas del suolo (CO<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>)
  - Mancanza di ossigeno

#### Ufficio delle miniere – Misurazioni (1936-1940)

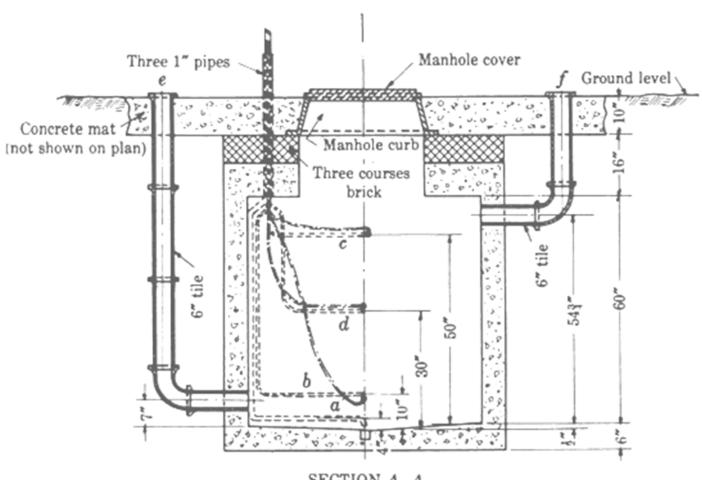

- Camerette in calcestruzzo prefabbricate
- Il design sperimentale creava atmosfere ibride:
  - Iniezione di CH<sub>4</sub> o CO<sub>2</sub> per produrre concentrazione costante
  - Mistura di aria + gas usciva attraverso I tombini di accesso
  - Tasso di ventilazione calcolato dalla fuorisciuta di gas necessaria per mantenere una concentrazione costanteve

- Influenza del numero (area) di aperture nei tombini di accesso che influivano sul tasso di ventilazione:
  - 6 fori nella fusione, 0.52 in<sup>2</sup> (335 mm<sup>2</sup>) ognuno
  - 42 fori realizzati, 0.44 in<sup>2</sup> (284 mm<sup>2</sup>) ognuno
- misurazioni:
  - Velocità dell'aria 60 in (1.5 m) sopra la superficie
  - Temperatura esterna ed interna
- volume =  $74 \text{ ft}^3 (2.1 \text{ m}^3)$
- Tasso di ventilazione  $\alpha$  area delle aperture



| Number | Opening         | Exchange | Ventilation          |                      | Ventilation<br>Effectiveness |
|--------|-----------------|----------|----------------------|----------------------|------------------------------|
|        | Area            | Rate     | Rate                 |                      | Ellectiveness                |
|        | in <sup>2</sup> | /24h     | ft <sup>3</sup> /24h | ft <sup>3</sup> /min | (ft³/min)/in²                |
| 1      | 0.52            | 1.92     | 142                  | 0.099                | 0.19                         |
| 2      | 1.04            | 2.37     | 176                  | 0.12                 | 0.12                         |
| 4      | 2.07            | 3.06     | 227                  | 0.16                 | 0.076                        |
| 6      | 3.11            | 2.94     | 218                  | 0.15                 | 0.049                        |
|        |                 | 3.20     | 237                  | 0.16                 | 0.053                        |
| 12     | 5.76            | 6.11     | 453                  | 0.31                 | 0.055                        |
| 24     | 11.1            | 15.55    | 1149                 | 0.80                 | 0.072                        |
| 48     | 21.7            | 20.10    | 1489                 | 1.03                 | 0.048                        |

Nota: 1 in<sup>2</sup> = 6,4516 cm<sup>2</sup> 1 ft<sup>3</sup> = 0,283168 m<sup>3</sup>




Nota:  $1 \text{ in}^2 = 6,4516 \text{ cm}^2$  $1 \text{ ft}^3 = 0,283168 \text{ m}^3$ 

- 3 camerette di differenti dimensioni, forma, profondità
- Risultati influenzati da:
  - Velocità del vento
  - Temperatura interna vs esterna
- Tasso di ventilazione  $\alpha$  (in<sup>2</sup> di aperture nei tombini)/(100 ft<sup>3</sup> di volume)

- Influenza della velocità dell'aria conosciuta (galleria del vento) sul tasso di ventilazione
- Le aree di apertura sono il maggior fattore di controllo nella ventilazione dei tombini
- Aumento della velocità dell'aria quantificabile in 10 mi/h (880 ft/min) aumenta il tasso di ventilazione del 50%

# Ufficio delle miniere (1937 & 1940)



SECTION A - A (Thermocouple leads, feed line, and sampling tubes shown diagrammatically)

- Condotto ventilato nei muri laterali in posizione alta e bassa
- Singolo condotto + 0 aperture nella copertura è praticamente inutile
- Condotto basso + apertura(e) = grande influenza +ve sul tasso di ventilazione
- Condotto basso + condotto alto + 0 fori = grande influenza +ve sul tasso di ventilazione

- La situazione ideale:
  - Luogo di lavoro:
    - Tempo ragionevole di trasferimento da/verso il sito
    - Sicurezza nei periodi di non presidio
    - area di lavoro sicura









